Remedial Action Progress Report 5 November 1, 2009 through January 31, 2010 for

Ventron/Velsicol Superfund Site Operable Unit 1 Wood-Ridge and Carlstadt, New Jersey

(USEPA No. NJD980529879)

February 26, 2010

Prepared for:

Morton International, Inc.

Prepared by:

PARSONS

Table of Contents

Sectio	n 1 – Introduction	
Sectio	n 2 – Remedial Actions Summary	
	Remedial Actions Status	
	Deviations and Modifications	
2.3	Remedial Actions to be Performed Next Period	2-2
2.4	Problems or Delays	2-3
	Schedule of Remedial Activities	
Sectio	n 3 – Permit Application Status	3-1
	on 4 – Sampling Results and Waste Generated	
4.1	Sampling Results	4-1
4.2	Waste Generated	4-1
	n 5 – Cost Summary	

Tables

Table 1 – Remedial Actions between November 1, 2009 and January 31, 2010

Table 2 - Permit Applications Status as of January 31, 2010

Table 3 - Mercury-Impacted Soils Disposed of between November 1, 2009 and January 31, 2010

Table 4 - Drums Disposed of between November 1, 2009 and January 31, 2010

Attachments

Attachment 1 - Construction Water Treatment Plant Sampling Results

Attachment 2 - Analytical Testing for Drum Disposal

Section 1 – Introduction

This progress report for the Ventron/Velsicol Superfund Site Operable Unit One (OU-1), referred to as the Site, located in the Boroughs of Wood-Ridge and Carlstadt, New Jersey summarizes the status of remedial actions being performed as described in the Undeveloped Area Remedial Action Workplan (RAW), approved by the New Jersey Department of Environmental Protection (NJDEP) on July 3, 2008, and select remedial actions described in the Developed Area RAW, approved by the United States Environmental Protection Agency (USEPA) on October 6, 2009. The progress report covers the period from November 1, 2009 to January 31, 2010. The progress report is being submitted pursuant to the Administrative Consent Order (ACO) between Morton International, Inc. and the NJDEP as well as the quarterly progress reporting requirements of both RAW's. This report has been prepared in accordance with New Jersey Administrative Code (N.J.A.C.) Section 7:26E-6.6(b).

The components of the remedial action presented in the Undeveloped Area RAW are as follows:

- Excavation of soils with concentrations of mercury greater than 620 mg/kg in the undeveloped portion of the Site;
- Excavation of the former drain line;
- Excavation of Ventron/Velsicol site-related constituents from the Lin-Mor property;
- Excavation of the 55-foot buffer area;
- Wolf Warehouse air monitoring; and
- Deed notices for Custodial Trust, Prince Packing, and Blum properties.

The components of the remedial action presented in the Developed area RAW are as follows:

- Excavation of soils with concentrations of mercury greater than 620 mg/kg in the developed portion of the Site;
- Improvements to the West Ditch;
- Installation of a vertical hydraulic barrier wall around the Wolf Warehouse;
- Installation of site caps on the developed and undeveloped areas;
- Installation of storm water controls in the developed and undeveloped areas;
- Monitoring of ground water at the Site;
- Contaminant flux monitoring between the Site and the adjoining water ways; and
- Deed notices for the Wolf Warehouse, U.S. Life Warehouse, Norfolk Southern property, Ethel Boulevard, and the EJB property.

The progress report is organized as follows:

- Section 1 Introduction:
- Section 2 Remedial Actions Summary;
- Section 3 Permitting Application Status;
- Section 4 Sampling Results and Waste Generated; and
- Section 5 Cost Summary.

Section 2 - Remedial Actions Summary

2.1 Remedial Actions Status

This section summarizes the status of remedial actions at the Site for the reporting period. **Table 1**, attached, provides a summary of remedial actions and the status of each. Remedial actions performed during this period include:

- Excavation of soils with concentrations of mercury greater than 620 mg/kg:
 - o Excavation of Soil:
 - Excavation was performed in Area A from the Developed Area RAW.
 - o Backfilling
 - Backfilling of Area I was completed excluding the portion where excavation has not been performed. The delay in excavating portions of Area I was addressed in Progress Report 4.
 - Backfilling of Area A was completed.
 - o Perimeter Air Monitoring:
 - The air monitoring system was demobilized on December 19, 2009 upon completion of intrusive activities and load out of the undeveloped area soils. The system will be re-mobilized prior to intrusive activities in the spring of 2010.
 - o Soil Disposal:
 - Load out of the excavated undeveloped area and Area A soils was completed this period. Soil disposal shipments are discussed below in Section 4.
 - o CWTP:
 - The CWTP was operated as needed this period and was shut down and winterized after the end of contact water handling activities. The CWTP will remain shut down until the start of the developed area construction in the spring of 2010.
- Excavation of the former drain line:
 - Excavation of the former drain line was performed this period between Area E/F and Area I. Approximately twenty feet of the former drain line alignment, located beneath the access road to the construction water treatment plant, was not excavated. The remaining section of the former drain line alignment will be excavated as part of the upcoming developed area work.
- Excavation of the 55-foot buffer area:
 - o Excavation and backfilling of the 55-foot buffer area was completed this period.

Drum Removal Activities:

- Analytical testing was performed on drums for disposal this period. This testing is described in Section 4.
- A total of 91 drums were disposed of this period. A summary of drums disposed is included in **Table 4**. A single, overpacked drum was not disposed of this period, and remains on the OU-1 drum storage pad. This drum is discussed below in Section 2.2.

2.2 Deviations and Modifications

During drum disposal activities this period, it was determined that the proper analytical sampling had not been performed on one drum. The drum was left in an overpack on the drum storage pad and will be disposed of during Developed Area activities.

2.3 Remedial Actions to be Performed Next Period

During the next reporting period, activities associated with the Developed Area RAW will begin. It is anticipated that construction mobilization will occur in the beginning of March 2010. The following remedial actions are anticipated to be performed during the next reporting period (February 1, 2010 to April 30, 2010):

Remobilization Activities

- o Perimeter Air Monitoring:
 - The perimeter air monitoring system will be re-mobilized prior to intrusive activities in the spring of 2010.
- o CWTP:
 - The CWTP will be restarted and operational.

• Undeveloped Area Activities

- Excavation of soils with concentrations of mercury greater than 620 mg/kg in the undeveloped portion of the Site:
 - Excavation of Soil:
 - Excavation will be performed in the remaining portions of Area I.
 - o Backfilling
 - Backfilling of the remaining portions of Area I will be conducted after the completion of excavation.

• Developed Area Activities

- Excavation of soils with concentrations of mercury greater than 620 mg/kg in the developed portion of the Site:
 - o Utility relocation and other pre-excavation activities will be performed.
 - Sheet Piling:
 - Sheet Piling in Area D will begin.

2.4 Problems or Delays

There were no problems or delays during this reporting period.

2.5 Schedule of Remedial Activities

Site mobilization is currently scheduled to occur in the beginning of March 2010. Currently, the project team is working together with the remedial action contractor (Sevenson Environmental Services) to establish a schedule for the upcoming construction. The activities anticipated for next period (February 1, 2010 to April 30, 2010) are included in this report based on the information currently available. A schedule of construction activities will be provided in the next progress report.

Section 3 – Permit Application Status

The permit application status for the project is presented in **Table 2.** Permit applications for the developed area activities are currently being prepared. No permit applications were submitted in this progress report period.

Section 4 – Sampling Results and Waste Generated

4.1 Sampling Results

This section summarizes sampling results obtained during the reporting period. Sampling was performed as part of the following programs:

- Construction Water Treatment Plant (CWTP) compliance testing; and
- Characterization samples for drum removal.

Testing of treated water from the CWTP was performed in accordance with permit number SRP PI G000004547 dated February 9, 2009. This testing is required by the NJDEP on a weekly basis when the plant is discharging effluent. Additionally, testing is required before water can be discharged for the first time from a given excavation area. Testing results are included in **Attachment 1**.

Two additional waste streams (DC-9 and DC-10, described in **Table 4**) were developed for the disposal of drums collected at the Site. A sample was taken from each waste stream and sent to Test America in Pittsburgh, PA for analysis. The samples were analyzed for the following:

- Mercury;
- Metals:
- PCBs:
- Pesticides:
- Herbicides:
- VOCs;
- SVOCs; and
- Inorganics.

No compounds were detected above the Resource Conservation and Recovery Act (RCRA) limits for hazardous waste contained in 40 CFR 261, and subsequently both waste streams were determined to be non-hazardous. The results of this testing are included in **Attachment 2**.

4.2 Waste Generated

This section discusses impacted media removed as part of the Undeveloped Area RAW remedial actions at the Site. Waste was generated as part of the following programs:

- Disposal of mercury impacted soil; and
- Drum removal activities.

Mercury impacted soil was removed from the Site in intermodal containers that were sent to Stablex Canada, Inc. located in Blainville, Quebec. A total of 102 roll-off containers of mercury-impacted soil were sent to Stablex Canada this period, which were classified as non-hazardous

waste in the United States. The 102 containers were classified as hazardous waste in Canada. A table summarizing mercury impacted soil sent offsite this period is included as **Table 3**

Ninety-one drums were removed from the Site for disposal this period. Drum disposal was conducted by Veolia Environmental Services of Flanders, New Jersey. Drums removed from the Site this period were disposed of under new waste streams (DC-9 and DC-10) and previously established waste streams (DC-1 to DC-8 and TAR-1). Drums were taken to three separate facilities: Veolia Environmental Services in Flanders, New Jersey; Veolia Environmental Services in Port Arthur, Texas; and Vexor Technologies in Medina, Ohio. A summary of drums sent for disposal is included in **Table 4**.

Section 5 – Cost Summary

This section presents a cost summary of the remedial action to date and provides a cost estimate of remaining work. To date approximately \$21,778,832 has been spent performing remedial action activities related to the Undeveloped Area RAW at the Site. It was estimated that approximately \$14,904,700 would be required to complete this phase of the work as described in the ACO. Further work will be performed at the Site as presented in the Developed Area RAW. The Developed Area RAW was approved on October 6, 2009 and the Developed Area construction documents are currently being produced. Updated costs for the Developed Area remedial actions presently under development and will be reported in the next progress report.

Tables

Remedial Action	Description	Scheduled this Reporting Period?	Status	Comments
	Construction water treatment plant	Construction of	the CWTP was or period. Operation of is ongoing.	The CWTP was operational as needed this period and was shut down and winterized after the end of contact water handling activities. The CWTP will be re-started in the Spring of 2010.
	Installation of perimeter air monitoring equipment		n a prior period. Air g ongoing.	The perimeter air monitoring system was demobilized from the Site on December 19, 2009 upon the completion of intrusive activities and the load out of undeveloped area soils. The system will be remobilized prior to intrusive activities in the spring of 2010.
Removal of Soil with Mercury Concentration Greater than 620 mg/kg Excavation of Former Drain Line Lin-Mor Excavation 55-foot Buffer Excavation Indoor Air Monitoring Drum Removal	Excavation in Area E/F	Task completed	in a prior period.	Excavation has been completed in Area E/F.
	Excavation in Area G			Excavation has been completed in Area G.
	Excavation in Area H	Task completed	in a prior period.	Excavation has been completed in Area H. Sheet pile removal was completed in Area H.
with Mercury Concentration Greater than 620	Excavation in Area I	No	Ongoing	Excavation was completed in Area I with the exception of the following cells: I-1A, I-1B, I-2B, I-3A, I-3B, I-8A, I-8B, I-13A, I-13B, and I-23B as well as portions of I-2A, I-9 and I-23A. Approximately 72% of the sheetpiling in Area I has been removed with the sheets seperating the completed portions of Area I from the uncompleted portions remaining in place. Portions of Area I which remain to be excavated will be completed in conjuction with the Developed Area work.
	Excavation of Area DL			Excavation has been compeleted in Areas DL-1 and DL-2
	Excavation of Area A	Yes Completed E		Excavation of Area A was completed.
	Backfilling in Area E/F	Task completed	in a prior period.	Backfilling of Area E/F has been completed.
	Backfilling in Area G	Task completed	in a prior period.	Backfilling of Area G has been completed.
	Backfilling in Area H	Task completed		Backfilling of Area H has been completed.
	Backfilling in Area I	Yes	Completed	Backfilling of Area I was completed in areas that have been excavated.
	Backfilling in Area DL	Task completed	in a prior period.	Backfilling of Areas DL-1 and DL-2 has been completed
	Backfilling in Area A	Yes	Completed	Backfilling of Area A was completed.
	Soil Load-out	Yes	Completed	A total of 102 intermodal containers were loaded with soil and sent for disposal this period. This brings the total number of intermodal containers sent for disposal at Stablex Canada to 2010.
· •	XRF field investigation program	Task completed	in a prior period.	The XRF program results were submitted in Progress Report 2.
	Excavation of the former drainline area	Yes	Ongoing	Excavation was performed to remove sections of the former drain line between Area E/F and Area I. Approximately twenty feet of the former drain line remains in place below the access road to the construction water treatment plant and will be excavated as part of the Developed Area work.
	Excavation of soil in the Lin-Mor area	Task completed		Excavation of approximately 20 cubic yards of soil on the Lin-Mor property, in areas LM-1 and LM-2, occurred between December 1 and December 4, 2008 and again on December 18, 2008. Excavation of these areas is complete.
Excavation	Excavation of the 55-foot buffer adjacent to Berry's Creek, Diamond Shamrock/ Henkel Ditch North, and West Ditch	Yes	Completed	Excavation and backfilling of the 55-foot buffer was completed this period.
	Indoor air monitoring at	No	-	No indoor air monitoring was scheduled for this period.
	the Wolf Warehouse Removal of drums and drum carcasses	Yes	Ongoing	A total of 91 drums were sent off-site for disposal this period. One drum remains on the drum storage pad and will be disposed of during the upcoming Developled Area work.

Table 2 - Permit Applications Status as of January 31, 2010 Ventron/Velsicol Superfund Site Operable Unit 1 Wood-Ridge and Carlstadt, New Jersey

Permit	Issuing Authority	Holder	Date Submitted	Status
Land Use Regulation Program (LURP) Coastal General Permit 15 Equivalency	NJDEP	Morton International	19-Dec-08	Comments were issued by the NJDEP and addressed by Parsons. Application was resubmitted on January 29, 2009 and is currently being reviewed by NJDEP. Permit equivalency was issued with conditions by the NJDEP on May 13, 2009.
Land Use Regulation Program (LURP) Coastal General Permit 15 Equivalency	NJDEP	Morton International	<u>-</u>	An updated LURP submission is being prepared to include the developed area work.
Zoning Certificate Equivalency	NJMC	Morton International	19-Dec-08	Comments were issued by NJ Meadowlands Commission on March 11, 2009 and addressed by Parsons. Permit was approved by the NJMC on July 31, 2009.
Zoning Certificate Equivalency	NJMC	Morton International	-	An updated NJMC zoning certificate is being prepared.
Discharge to Groundwater Equivalency Permit	NJDEP	Morton International	19-Dec-08	Permit was granted by NJDEP on February 9, 2009.
Construction Permit	Wood-Ridge	Bigler Associates	26-Jan-09	Permit was granted by Wood-Ridge on January 26, 2009.
Building Permit	Wood-Ridge	Bigler Associates	26-Jan-09	Permit was granted by Wood-Ridge on January 26, 2009.
Electrical permit	Wood-Ridge	Bigler Associates	26-Jan-09	Permit was granted by Wood-Ridge on January 26, 2009.
Stormwater Pollution Prevention Plan	Bergen County	Parsons	6-Feb-09	Originally approved November 30, 2007. Revised permit submitted in January 2009 and approval received on February 26, 2009. Revisions to the 55-foot buffer decreasing the ammount of rip-rap were approved by Bergen County on October 5, 2009.
Stormwater Pollution Prevention Plan (SWPPP)	Bergen County	Parsons	-	An updated SWPPP is being prepared.
Temporary Trailer Permit	Wood-Ridge	Parsons	-	Permit was approved by Wood-Ridge on November 11, 2007 and trailers are on site.
Electrical permit	Wood-Ridge	Parsons	-	Permit was approved by Wood-Ridge on November 13, 2007.
Notice of Proposed Construction of Alteration Form 7460-1	Federal Aviation Administration	Morton International	13-Jan-09	Determination permitting activity was issued by FAA on April 23, 2009.

Remedial Action Progress Report 5 Ventron/Velsicol Superfund Site Operable Unit 1

Table 3 - Mercury-Impacted Soils Disposed of between November 1, 2009 and January 31, 2010

Ventron/Velsicol Superfund Site Operable Unit 1

Wood-Ridge and Carlstadt, New Jersey

144	Identification/	Quantity		Date Shipped from	Door	Documentation ²			
Waste Stream	Container Number	(tons)	Disposal Facility	United States	U.S. Bill of Lading		Canada		
Mercury Impacted Soil	EPIU222526	23.67	Stablex Canada	2009-11-02	006223				
Mercury Impacted Soil	EPIU223208	25.73	Stablex Canada Stablex Canada	2009-11-02		<u>-</u>	9383413-3		
Mercury Impacted Soil	EPIU222517	23.38	Stablex Canada Stablex Canada	2009-11-02	006224 006225	<u> </u>	9383414-1		
Mercury Impacted Soil	EPIU222487	25.04	Stablex Canada	2009-11-02			9383415-8		
Mercury Impacted Soil	EPIU222207	25.59	Stablex Canada Stablex Canada	2009-11-02	006226	•	9383416-6		
Mercury Impacted Soil	EPIU222597	24.44	Stablex Canada	2009-11-02	006227	<u> </u>	9383417-4		
Mercury Impacted Soil	EPIU222406	23.04	Stablex Canada Stablex Canada	2009-11-02	006228	-	9383418-2		
Mercury Impacted Soil	EPIU223110	25.42	Stablex Canada	2009-11-02	006229		9383419-0		
Mercury Impacted Soil	EPIU222320	20.03	Stablex Canada	2009-11-02	006230 006231	<u> </u>	9383420-8		
Mercury Impacted Soil	EPIU222056	22.62	Stablex Canada	2009-11-02		-	9383421-6		
Mercury Impacted Soil	EPIU222484	24.60	Stablex Canada Stablex Canada	2009-11-02	006232	-	9383422-4		
Mercury Impacted Soil	EPIU222366	23.81	Stablex Canada	2009-11-02	006233		9383423-2		
Mercury Impacted Soil	EPIU222169	23.60	Stablex Canada Stablex Canada	2009-11-02	006234	-	9383424-0		
Mercury Impacted Soil	EPIU222098	23.45	Stablex Canada		006235	-	9383425-7		
Mercury Impacted Soil	EPIU222084	24.11	Stablex Canada	2009-11-02	006236	-	9383426-5		
Mercury Impacted Soil	EPIU223341	22.97		2009-11-02	006237	•	9383427-3		
Mercury Impacted Soil	EPIU223109	21.31	Stablex Canada	2009-11-02	006238	<u> </u>	9383428-1		
Mercury Impacted Soil	EPIU222413	22.35	Stablex Canada	2009-11-02	006239		9383429-9		
Mercury Impacted Soil	EPIU222023	22.40	Stablex Canada	2009-11-02	006240	-	9383430-7		
Mercury Impacted Soil	EPIU222151	25.78	Stablex Canada	2009-11-02	006241	· · · · · · · · · · · · · · · · · · ·	9383431-5		
Mercury Impacted Soil	EPIU223085	26.10	Stablex Canada	2009-11-02	006242		9383432-3		
Mercury Impacted Soil	EPIU222150	23.61	Stablex Canada	2009-11-03	006243	-	9383433-1		
Mercury Impacted Soil	EPIU222132	26.00	Stablex Canada	2009-11-03	006244		9383434-9		
Mercury Impacted Soil	EPIU223247	24.83	Stablex Canada Stablex Canada	2009-11-03	006245		9383435-6		
Mercury Impacted Soil	EPIU222353	23.45	Stablex Canada	2009-11-03	006246	-	9383436-4		
Mercury Impacted Soil	EPIU222524	24.87	Stablex Canada	2009-11-03	006247	-	9383437-2		
Mercury Impacted Soil	EPIU222107	21.66	Stablex Canada	2009-11-03	006248	•	9383438-0		
Mercury Impacted Soil	EPIU222574	23.88	Stablex Canada Stablex Canada	2009-11-03	006249	-	9383439-8		
Mercury Impacted Soil	EPIU222453	26.33		2009-11-03	006250		9383440-6		
Mercury Impacted Soil	EPIU222405	25.37	Stablex Canada	2009-11-03	006251	-	9383441-4		
Mercury Impacted Soil	EPIU223347	27.30	Stablex Canada	2009-11-03	006252	•	9383442-2		
Mercury Impacted Soil	EPIU223039	23.43	Stablex Canada	2009-11-03	006253	-	9383443-0		
Mercury Impacted Soil	EPIU222567	24.74	Stablex Canada	2009-11-03	006254		9383444-8		
Mercury Impacted Soil	EPIU223145	26.18	Stablex Canada Stablex Canada	2009-11-04	006255		9383445-5		
Mercury Impacted Soil	EPIU222531	23.28	Stablex Canada Stablex Canada	2009-11-04	006256		9383446-3		
Mercury Impacted Soil	EPIU222564	20.55		2009-11-04	006257	•	9383447-1		
Mercury Impacted Soil	EPIU222268	20.78	Stablex Canada	2009-11-04	006258		9383448-9		
Mercury Impacted Soil	EPIU222019	22.09	Stablex Canada Stablex Canada	2009-11-04	006259		9383449-7		
Mercury Impacted Soil	EPIU222160	21.35		2009-11-04	006260		9383450-5		
Mercury Impacted Soil	EPIU223299	19.63	Stablex Canada	2009-11-04	006261		9383451-3		
Mercury Impacted Soil	EPIU222369	19.27	Stablex Canada	2009-11-04	006262		9383452-1		
Mercury Impacted Soil	EPIU222337	19.04_	Stablex Canada	2009-11-04	006263	-	9383453-9		
Mercury Impacted Soil	EPIU222152	18.96	Stablex Canada	2009-11-04	006264		9383454-7		
Mercury Impacted Soil	EPIU223498	23.03	Stablex Canada	2009-11-04	006265	-	9383455-4		
Mercury Impacted Soil	EPIU222460	23.52	Stablex Canada	2009-11-04	006266	-	9383456-2		
Mercury Impacted Soil	EPIU223005	21.48	Stablex Canada Stablex Canada	2009-11-04	006267	<u> </u>	9383457-0		
Mercury Impacted Soil	EPIU223307	21.40.		2009-11-04	006268	 	9383458-8		
Mercury Impacted Soil	EPIU223313	23.67	Stablex Canada Stablex Canada	2009-11-04	006269		9383459-6		
Mercury Impacted Soil	EPIU223022	23.96		2009-11-04	006270	-	9383460-4		
Mercury Impacted Soil	EPIU222595	28.16	Stablex Canada Stablex Canada	2009-11-04	006271	· · · · · · · ·	9383461-2		
Mercury Impacted Soil	EPIU223379	24.36		2009-11-04	006272	•	9383462-0		
Mercury Impacted Soil	EPIU222463	27.09	Stablex Canada Stablex Canada	2009-11-04	006273	-	9383463-8		
Mercury Impacted Soil	EPIU223121	26.82		2009-11-04	006274		9383464-6		
Mercury Impacted Soil	EPIU222208	24.60	Stablex Canada Stablex Canada	2009-11-04	006275	-	9383465-3		
Mercury Impacted Soil	EPIU223069	22.04		2009-11-04	006276		9383466-1		
Mercury Impacted Soil	EPIU222248	22.76	Stablex Canada	2009-11-04	006277		9383467-9		
Mercury Impacted Soil	EPIU223408	24.90	Stablex Canada	2009-11-04	006278		9383468-7		
Mercury Impacted Soil	EPIU222280	22.69	Stablex Canada Stablex Canada	2009-11-04	006279	-	9383469-5		
Mercury Impacted Soil	EPIU222515	26.34		2009-11-05	006280	_	9383470-3		
Mercury Impacted Soil	EPIU222319	23.50	Stablex Canada	2009-11-05	006281		9383471-1		
Mercury Impacted Soil	EPIU223029	25.47	Stablex Canada	2009-11-05	006282		9383472-9		
Mercury Impacted Soil	EPIU223029 EPIU222147		Stablex Canada	2009-11-05	006283	•	9383473-7		
Mercury Impacted Soil	EPIU222147	20.30	Stablex Canada	2009-11-05	006284	-	9383474-5		
Mercury Impacted Soil		23.95	Stablex Canada	2009-11-05	006285		9383475-2		
Mercury Impacted Soil	EPIU222328	22.31	Stablex Canada	2009-11-05	006286		9383476-0		
	EPIU222059	19.18	Stablex Canada	2009-11-05	006287		9383477-8		
Mercury Impacted Soil Mercury Impacted Soil	EPIU223429	23.86	Stablex Canada	2009-11-05	006288	•	9383478-6		
Mercury Impacted Soil	EPIU223333	24.67	Stablex Canada	2009-11-05	006289		9383479-4		
Mercury Impacted Soil	EPIU223239	21.64	Stablex Canada	2009-11-05	006290		9383480-2		

Table 3 - Mercury-Impacted Soils Disposed of between November 1, 2009 and January 31, 2010 Ventron/Velsicol Superfund Site Operable Unit 1 Wood-Ridge and Carlstadt, New Jersey

Waste Stream	Identification/	Quantity	5'1 = 1	Date Shipped from	Documentation ²					
waste Stream	Container Number	(tons)	Disposal Facility ¹	United States	U.S. Bill of Lading	U.S. Manifest	Canada			
Mercury Impacted Soil	EPIU223256	25.94	Stablex Canada	2009-11-05	006291	•	9383481-0			
Mercury Impacted Soil	EPIU222241	22.55	Stablex Canada	2009-11-05	006292	-	9383482-8			
Mercury Impacted Soil	EPIU223319	23.63	Stablex Canada	2009-11-05	006293	-	9383483-6			
Mercury Impacted Soil	EPIU223409	23.23	Stablex Canada	2009-11-05	006294	-	9383484-4			
Mercury Impacted Soil	EPIU222008	25.95	Stablex Canada	2009-11-05	006295	-	9383485-1			
Mercury Impacted Soil	EPIU223023	22.75	Stablex Canada	2009-11-05	006296		9383486-9			
Mercury Impacted Soil	EPIU222007	22.24	Stablex Canada	2009-11-05	006297	-	9383487-7			
Mercury Impacted Soil	EPIU222230	22.79	Stablex Canada	2009-11-05	006298	-	9383488-5			
Mercury Impacted Soil	EPIU222291	27.46	Stablex Canada_	2009-11-05	006299		9383489-3			
Mercury Impacted Soil	EPIU222533	17.45	Stablex Canada	2009-11-06	006300		9383490-1			
Mercury Impacted Soil	EPIU222041	19.71	Stablex Canada	2009-11-13	006301	-	9383491-9			
Mercury Impacted Soil	EPIU222587	20.67	Stablex Canada	2009-11-13	006302		9383492-7			
Mercury Impacted Soil	EPIU222356	20.44	Stablex Canada	2009-11-13	006303		9383493-5			
Mercury Impacted Soil	EPIU222412	22.54	Stablex Canada	2009-11-13	006304	_	9383494-3			
Mercury Impacted Soil	EPIU222205	29.92	Stablex Canada	2009-11-13	006305	-	9383495-0			
Mercury Impacted Soil	EPIU222424	27.22	Stablex Canada	2009-11-13	006306	-	9383496-8			
Mercury Impacted Soil	EPIU223215	29.43	Stablex Canada	2009-11-13	006307	_	9383497-6			
Mercury Impacted Soil	EPIU222179	30.10	Stablex Canada	2009-11-13	006308		9383498-4			
Mercury Impacted Soil	EPIU222319	32.12	Stablex Canada	2009-11-13	006309		9383499-2			
Mercury Impacted Soil	EPIU222331	24.95	Stablex Canada	2009-11-13	006310	-	9385910-6			
Mercury Impacted Soil	EPIU223396	25.25	Stablex Canada	2009-11-13	_006311		9385911-4			
Mercury Impacted Soil	EPIU222270	25.06	Stablex Canada	2009-11-13	006312	-	9385912-2			
Mercury Impacted Soil	EPIU223232	20.71	Stablex Canada	2009-11-19	006313		9385913-0			
Mercury Impacted Soil	EPIU222097	21.40	Stablex Canada	2009-11-19	006314	_	9385914-8			
Mercury Impacted Soil	EPIU222265	23.53	Stablex Canada	2009-11-19	006315		9385915-5			
Mercury Impacted Soil	EPIU223225	25.61	Stablex Canada	2009-11-19	006316		9385916-3			
Mercury Impacted Soil	EPIU222240	22.04	Stablex Canada	2009-11-19	006317		9385917-1			
Mercury Impacted Soil	EPIU223086	20.50	Stablex Canada	2009-11-19	006318		9385918-9			
Mercury Impacted Soil	EPIU222032	22.62	Stablex Canada	2009-11-19	006319		9385919-7			
Mercury Impacted Soil	EPIU222231	24.51	Stablex Canada	2009-11-19	006320		9385920-5			
Mercury Impacted Soil	EPIU223265	27.30	Stablex Canada	2009-11-19	006321		9385921-3			
Mercury Impacted Soil	EPIU222575	28.36	Stablex Canada	2009-11-19	006322		9385922-1			
Mercury Impacted Soil	EPIU223339	23.91	Stablex Canada	2009-11-19	006323	-	9385923-9			
Mercury Impacted Soil	EPIU222580	16.45	Stablex Canada	2009-11-19	006324		9385924-7			

Notes:

Stablex Canada, Inc. of Blainville, Quebec

²Bills of Lading are being used for non-hazardous shipments in the United States (U.S.). Manifests are being used for hazardous shipments in the U.S. and all shipments in Canada.

Table 4 - Drums Disposed of between November 1, 2009 and January 31, 2010

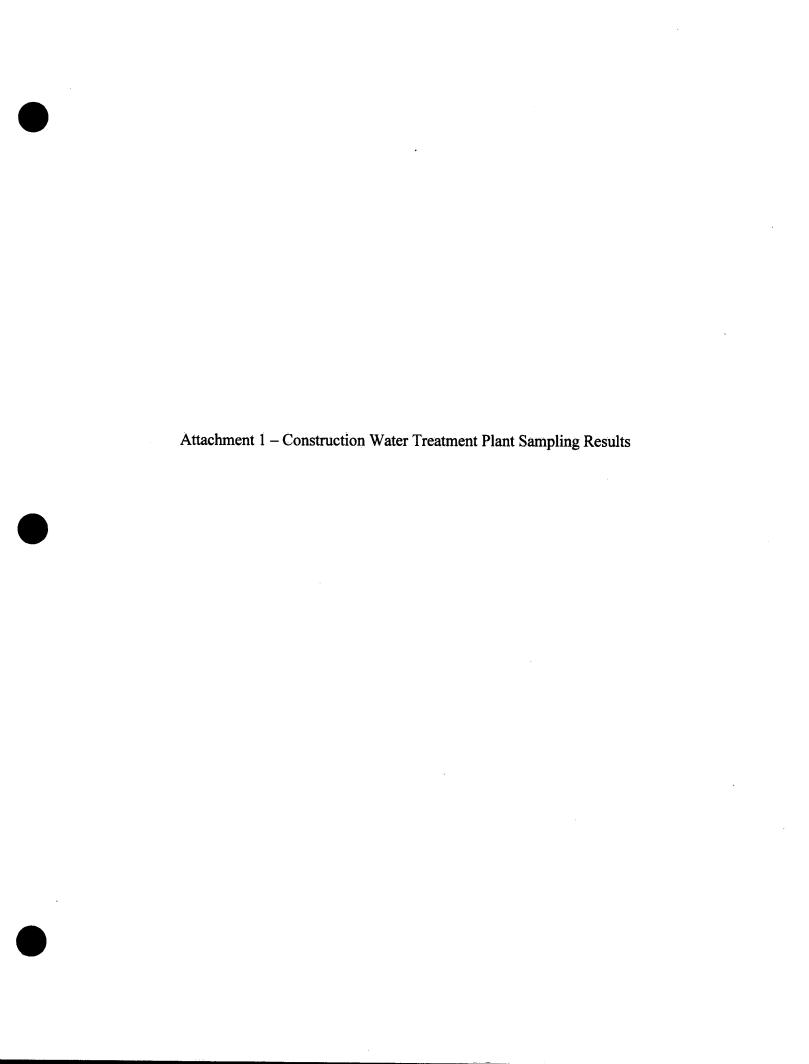
Ventron/Velsicol Superfund Site Operable Unit 1

Wood-Ridge and Carlstadt, New Jersey

Parsons Drum ID	Waste Stream Code	Date Overpacked	Date Sent for Disposal	Destination Facility
P-042	DC-5	08/13/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-043	DC-5	08/20/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-044	D.C-5	08/20/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-053A	DC-5	08/20/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-054	DC-5	08/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-055	DC-5	08/20/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-079	DC-5	11/11/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-080	DC-5	11/11/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-103	TAR	11/12/09	1/12/2010	Vexor Tech., Medina, Ohio
P-104	TAR	11/12/09	1/12/2010	Vexor Tech., Medina, Ohio
P-121	DC-5	05/28/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-126	DC-10	05/28/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-127	DC-9	05/28/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-128/P-129	DC-9	05/28/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-132	DC-10	05/29/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-133	DC-10	05/30/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-134	DC-1	05/28/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-137	DC-9	05/27/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-138	DC-9	05/27/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-147	TAR	04/02/09	1/12/2010	Vexor Tech., Medina, Ohio
P-163	DC-9	06/25/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-190	DC-5	07/16/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-191	DC-5	07/16/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-205	DC-9	7/23/2009	1/12/2010	Veolia ES, Port Arthur, Texas
P-206/P-210/P-212	DC-9	7/23/2009	1/12/2010	Veolia ES, Port Arthur, Texas
P-209	DC-9	7/23/2009	1/12/2010	Veolia ES, Port Arthur, Texas
P-211	DC-9	7/23/2009	1/12/2010	Veolia ES, Port Arthur, Texas
P-217	DC-1	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-226	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-227	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-228	DC-1	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-235	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-236	DC-9	07/25/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-237	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-240	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-241	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-242	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-243	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-244	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-245	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-246	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-247	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-248	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-249	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-250	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-251	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-253 P-254	DC-9	07/24/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-254 P-255	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-255 P-256	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-256 P-257	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-260	DC-9	07/23/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-284	DC-9	08/05/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-285	DC-9	08/05/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-286	DC-1	08/05/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-287	DC-9	08/05/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-288	DC-9	08/05/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-289	DC-9	08/05/09	1/12/2010	Veolia ES, Port Arthur, Texas

Remedial Action Progress Report 5 Ventron/Velsicol Superfund Site Operable Unit 1

Table 4 - Drums Disposed of between November 1, 2009 and January 31, 2010


Ventron/Velsicol Superfund Site Operable Unit 1

Wood-Ridge and Carlstadt, New Jersey

Parsons Drum ID	Waste Stream Code ¹	Date Overpacked	Date Sent for Disposal	Destination Facility
P-290	DC-9	08/05/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-291	DC-9	08/05/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-293	DC-5	08/12/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-295	DC-7	08/12/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-299	D.C-1	08/20/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-301	DC-9	08/20/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-304	DC-1	08/20/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-309	TAR	08/20/09	1/12/2010	Vexor Tech., Medina, Ohio
P-312	DC-9	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-313	DC-9	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-314	DC-9	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-315	DC-9	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-316	DC-9	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-317	DC-1	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-318	DC-1	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-319	DC-1	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-320	DC-3	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-321	DC-9	08/21/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-326	TAR	08/21/09	1/12/2010	Vexor Tech., Medina, Ohio
P-344	TAR	10/16/09	1/12/2010	Vexor Tech., Medina, Ohio
P-354	DC-6	10/16/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-357	DC-4	10/16/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-358	DC-6	10/16/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-360	DC-1	10/16/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-361	TAR	10/16/09	1/12/2010	Vexor Tech., Medina, Ohio
P-362	DC-4	10/16/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-365	TAR	10/16/09	1/12/2010	Vexor Tech., Medina, Ohio
P-367	DC-6	11/11/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-368	DC-6	11/11/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-369	DC-6	11/11/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-370	DC-5	11/12/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-371	DC-5	11/12/09	1/12/2010	Veolia ES, Port Arthur, Texas
P-372	DC-5	11/12/09	1/12/2010	Veolia ES, Port Arthur, Texas

Notes:

- 1) Description of Waste Streams (Analytical Sample ID representative of Waste Stream)
 - DC-1 Epoxy, lighter brown, soft putty material w/ hard brown material. (20081229VVDC-1)
 - DC-2 Phenolic, brownish purple, sweet smell (20081229VVDC-2)
 - DC-3 Paint; looks like dried drywall compound (20081229VVDC-3)
 - DC-4 Contains dirt & trash (20081229VVDC-4)
 - DC-5 White crystals (20081229VVDC-5)
 - DC-6 Epoxy; white, waxy looking, very hard. (20081229VVDC-6)
 - DC-7 Resin; Brownish, solid resin (20081229VVDC-7)
 - DC-8 white/gray, grainy material (20081229VVDC-8)
 - DC-9 deteriorated drum carcasses containing gray ash and residual soil (20091116DC-9C)
 - DC-10 deteriorated drum carcasses containing grease/lard like material (20091116DC-10C)
 - TAR Drums containing tar-like contents (TAR-1)

October 19, 2009

Chris Greene, P.E., Project Manager PARSONS 150 Federal Street 4th Floor Boston, MA 02110

Re: Ventron Velsicol Superfund Site – Construction Water Treatment Plant
CWTP Effluent Test Results from Testing of Water From Area I and WRTG Work
Effluent Sample Collected on October 12, 2009

Dear Chris:

Attached please find the laboratory data from Test America for the Construction Water Treatment Plant (CWTP) effluent sample collected on October 12, 2009. The CWTP was operated treating approximately 64,421 gallons of water from Area I, WRTG work and stockpile runoff during the week ending October 17th.

Sample Collection and Data Summary

Effluent results are presented below and copies of the data sheets and chain of custody forms are attached. Test results confirm compliance with the discharge permit-by-rule effluent limits for all days of operation.

Summary of CWTP Effluent Data Excavation Area I and WRTG Effluent

Parameter	10/12/09 Result, ug/l	Test America RL – ug/L	Weekly Average ug/l	NJDEP Permit Limit ug/l
Arsenic	<2.5	2.5	<2.5	3
Mercury	<0.20	0.20	<0.20	2
Thallium	<1.0	1.0	<1.0	2
Iron	<150	150	<150	1,000
Manganese	18.5	10.0	18.5	1,000
TSS	<5,000	5,000	<5.000	5,000
Benzene	<1.0	0.2	<1.0	1

Weekly average values: When the reported value is greater than the MDL but less than the RL, a value of 50% of the RL will be used to calculate the average value. When the reported value is less than the MDL, a value of 50% of the MDL will be used to calculate the average value. NS = not sampled.

All Testing performed by Test America, Edison, NJ.

Please contact me with any questions.

Sincerely,

BIGLER ASSOCIATES, INC.

Daniel Bigler

C: J. Fettig, T. Schoenberg, D. Alesandro, L. Frey

<u>TestAmerica</u>

SUMMARY OF ANALYTICAL RESULTS: 460-6672-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFF	
Lab Sample No.	PQLs and		460-6672-1	
Sampling Date	GW Quality	GW Quality	10/12/2009 10:00:00 AM	
Matrix	2000 Criteria	2005Criteria	Water	_
Dilution Factor				
Units				
WET CHEMISTRY			_	
Total Suspended Solids (mg/L)	NA	NA	5.0	υ

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 10/14/2009 5:07:42 PM

TestAmerica

SUMMARY OF ANALYTICAL RESULTS: 460-6672-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFF	
Lab Sample No.	PQLs and	PQLs and	460-6672-1	
Sampling Date	GW Quality	GW Quality	10/12/2009 10:00:00 AM	
Matrix 2000 Crite		2005Criteria	Water	
Dilution Factor				-
Units	ug/l	ug/l	ug/L	
METALS				
Arsenic	8	3	2.5	υ
Iron	300	300	150	Ü
Manganese	50	50	18.5	
Mercury	2	. 2	0.20	Ü
Thallium	10	2	1.0	U

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 10/14/2009 5:07:41 PM

<u>TestAmerica</u>

SUMMARY OF ANALYTICAL RESULTS: 460-6672-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFF	Г
Lab Sample No.	PQLs and	PQLs and	460-6672-1	Г
Sampling Date	GW Quality	GW Quality	10/12/2009 10:00:00 AM	T
Matrix	2000 Criteria	2005Criteria	Water	T
Dilution Factor			1	
Units	ug/l	ug/i	ug/L	Т
VOLATILE COMPOUNDS (GC/MS)				
Benzene	1	1	1.0	u
Total Confident Conc.			ò	F
Total Estimated Conc. (TICs)			0	<u> </u>

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 10/14/2009 5:07:41 PM

777 New Dur Edison, New Phone: (732)

<u>TestAmerica</u>

CHAIN OF CUSTODY ANALYSIS REQUEST.

THE LEADER IN ENVIRONMENTAL TE	STING							3 7 1	direction.		in hi	i ta	101	- 10 M	હું હું ∴ ફ્રેક્ક}
Name (for report and invoice)			amplet UA	a Name (Printed AS A	מסני	3	を持	Site/i	1000	2	ilicatio	يرو		
Company DIGLER ASSOC.	THE		ROM						Stale (Location of site) N. N. Regulation: Propram:						
Addiess MATN ST-			nalyala T Statistard	umerouse:			ANALYS	e Alfau	STEO G	Arrik a.		940 Care	Provers		i.
RIOGEFTED PK	State		tusti Ciria 2 Wook	ger Authori	od Fori	*	X			1					
101 2960712 Fax			1:Week Other	<u>ال</u> 20		1		t				11: 13 17: 11:			\c_1
Sample Identification			Time	Matrix	No. of. Cont.	2	2	Ľ	15.6 登记						in it
FLANT LEFT		13/65/	0.00	AU.	5	28.		¥	18.4 18.4					7. 7	
			Va.								A A	7 e 1	10 m	以上 [1] 2	
													ingerija Kareni		۱ <u>۱</u> د د د
				12.0		jú v			9 14	a Coa	4 1				
		AZZA	. 10 m												
Preservation Used: 1 = ICE, 2 = HC	. 8 = H _s SO ₄ - 4 7 = Other	the second second	= NaC	H	Soit. Water					英	. 5 400				
Special Instructions MEA	us a fig		AZ.	ne je	As Car	200	20			7	.11		Wa	ior Me	ials
Refinition by	Company BAI		(大) (1)	1,700	le / Time 9 114		- Octobr	V. 35			Y.			I AT	ariy
Relinquished by	Company				e/Time									Comp	
Relinquished by	Company			Da	ie / Time	CLAU CLAU	2) Flecely	ed by		17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	技术	· 美		Comp	iny.
3) Relinguished by	Company			Te Da	ie/Time		8) Receiv	od by	推模	1 = 0	沙拉			Conto	iny
	1 1202				E.		9) K.		4: 6 F	playe,				1000	1.5

Laboratory Certifications: New Jersey (12028), New York (11452), Pennsylvania (68:522), Connecticut (IPH-0200), Finode Island

Massachusetts (M-NJ312), North Carolina (No. 578

igler Associates, Inc.

October 26, 2009

Chris Greene, P.E., Project Manager PARSONS 150 Federal Street 4th Floor Boston, MA 02110

Re: Ventron Velsicol Superfund Site – Construction Water Treatment Plant CWTP Effluent Test Results from Testing of Water From Area I and WRTG Work Effluent Sample Collected on October 19, 2009

Dear Chris:

Attached please find the laboratory data from Test America for the Construction Water Treatment Plant (CWTP) effluent sample collected on October 19, 2009. The CWTP was operated treating approximately 103,535 gallons of water from WRTG work and soil stockpile runoff during the week ending October 26th.

Sample Collection and Data Summary

Effluent results are presented below and copies of the data sheets and chain of custody forms are attached. Test results confirm compliance with the discharge permit-by-rule effluent limits for all days of operation.

Summary of CWTP Effluent Data Excavation Area I and WRTG Effluent

Parameter	10/19/09 Result, ug/l	Test America RL – ug/L	Weekly Average ug/l	NJDEP Permit Limit
Arsenic	<2.5	2.5	<2.5	ug/l
Mercury	<0.20	0.20	<0.20	<u>3</u>
Thallium	<1.0	1.0	<1.0	2
Iron	<150	150	<150	1,000
Manganese	102	10.0	102	1,000
TSS	<5,000	5,000	<5,000	5,000
Benzene	<1.0	0.2	<1.0	1

Weekly average values: When the reported value is greater than the MDL but less than the RL, a value of 50% of the RL will be used to calculate the average value. When the reported value is less than the MDL, a value of 50% of the MDL will be used to calculate the average value. NS = not sampled.

All Testing performed by Test America, Edison, NJ.

Please contact me with any questions.

Sincerely,

BIGLER ASSOCIATES, INC.

Daniel Bigler

C: J. Fettig, T. Schoenberg, D. Alesandro, L. Frey

<u>TestAmerica</u>

SUMMARY OF ANALYTICAL RESULTS: 460-6926-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFF	
Lab Sample No.	PQLs and	PQLs and	460-6926-1	
Sampling Date	GW Quality	GW Quality	10/19/2009 10:00:00 AM	
Matrix	2000 Criteria	2005Criteria	Water	
Dilution Factor				
Units	ug/l	uġ/l	ug/L	
METALS		The section of the se		
Arsenic	8	3	2.5	Ü
Iron	300	300	150	Ü
Manganese	50	50	102	Г
Mercury	2	2	0.20	U
Thallium	10	Ž	1.0	U

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 10/21/2009 7:31:25 AM

TestAmerica

SUMMARY OF ANALYTICAL RESULTS: 460-6926-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFF	
Lab Sample No.	PQLs and	PQLs and	460-6926-1	
Sampling Date	GW Quality	GW Quality	10/19/2009 10:00:00 AM	
Matrix	2000 Criteria	2005Criteria	Water	_
Dilution Factor				
Units				-
WET CHEMISTRY				_
Total Suspended Solids (mg/L)	NA	NA	5.0	U

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 10/21/2009 7:31:26 AM

TestAmerica

SUMMARY OF ANALYTICAL RESULTS: 460-6926-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFF	
Lab Sample No.	PQLs and	PQLs and	460-6926-1	
Sampling Date	GW Quality	GW Quality	10/19/2009 10:00:00 AM	
Matrix	2000 Criteria	2005Criteria	Water	
Dilution Factor	M-1 MA 1		17	
Units	ug/l	ug/l	ug/L	
VOLATILE COMPOUNDS (GC/MS)				,
Benzene	1	1	1.0	U
Total Confident Conc.		the state of the s	Ō	
Total Estimated Conc. (TICs)	,		Ō	7

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 10/21/2009 7:31:24 AM

777 New Durl Edison, New . Phone: (732)

<u>TestAmerica</u>

CHAIN OF CUSTODY / ANALYSIS REQUEST

THE LEADER IN ENVIRONMENTAL TES	STING					-				¹					
Name (for report and invoice)	~		Sample	s Name (Printed)	?		alle/	lalec	Udent	ilicatio	7 4	,	
DAN ALESANOM	<u>., </u>	<u> </u>	DAN ALBANDICO			State (Location of site): NJ:						A 13.2.			
Company ASSIX		MC-	P, O, #	P. O. #				_		Progr		NJ;	J; 🔀	NY	
Address	<u> </u>		Analysis Turnsround Time ANALYSIS RE				IS RECV					(FineESt)			
2 MATH ST			Standard				Ι	Γ	T	Ī	1		1	П	
Criv	State		Rush Chri	igos Authona	ed For	W	*			ľ			1		
RIOGERIAD PK	VVI		2 Work			4	3	X		F	:		1		
Phone Fax			f Wook Other		1 HR	40 Z GWE	るがある	y							
201 296 0712		T	COLINE	<u> </u>	No. of.	1/2	W	1					- 1		
Sample Identification		Date	Time	Matrix		B	1	١ ٠							
PLANT EFF		idaba	10100		5	X	X	X							
			ļ		- 1			ļ <u>.</u>							
AND THE PROPERTY OF THE PROPER			ļ						ļ		L		2		,
	,		<u> </u>	ļ		ļ		ļ		ļ					
			 											-	
1		· · · · · · · · · · · · · · · · · · ·		ļ	<u> </u>	ļ			<u> </u>					- 1	
								ļ	<u> </u>	-				_	
		ļ		ļ	ļ	ļ			ļ.,					_	
						ļ	_		<u> </u>			-	_		
			<u> </u>										_	_	
Preservation Used: 1 = ICE, 2 = HCI,			, 5.ª Na¢	DH	Soil:				ļ						, , , ,
6 = Other					Water:	1,2	114								
Special Instructions METAL	<u>5= h</u>	ls, As.	17,	Fe,1	Un.	<u> </u>	SF	PL	<u>.</u> = •	<5		11-	Wa	ter Me	atals
Reliminished by	Compar	ıy İ		Di	IN Time	11	Recei	ved by		17	y A			Comp	any "
N all	BA	ゴ ー		VIIICI	101 .	300	11/2	SZ,	X//	17		معطفت بيسيع	一十		1
Relinquished by	Compar	ıy	· · · · · · · · · · · · · · · · · · ·	/ V	ite //Time	3	Recei	ved by	1	<u> </u>		4 .	- 1	Comp	any
2)				1 1	1		2).								
Relinquished by	Compar	ıy	-	Da	ite / Time		Recei	ved by				· · · · · · · · ·		Comp	any
3)					ı		3)								•
Relinquished by	Compar	iy		Da	te / Time	,	Recei	ved by	· ·				 	2οπ:μί	any
4)	1				1		4):							•	•.
Laboratory Certifications: New Jer	sey (1202	28), New	York (11	452), P	ennsylv	ania (6	8-522), Co	nnec	ticut ((PH-0	200).	Rho	le Is	and

Massachusetts (M-NJ312), North Carolina (No. 578)

November 12, 2009

Chris Greene, P.E., Project Manager PARSONS 150 Federal Street 4th Floor Boston, MA 02110

Re: Ventron Velsicol Superfund Site – Construction Water Treatment Plant CWTP Effluent Test Results from Testing of Water From Area I and WRTG Work Effluent Sample Collected on November 3, 2009

Dear Chris:

Attached please find the laboratory data from Test America for the Construction Water Treatment Plant (CWTP) effluent sample collected on November 3, 2009. The CWTP was operated treating approximately 79,200 gallons of water from WRTG work and soil stockpile runoff during the week ending November 3rd.

Sample Collection and Data Summary

Effluent results are presented below and copies of the data sheets and chain of custody forms are attached. Test results confirm compliance with the discharge permit-by-rule effluent limits for all days of operation.

Summary of CWTP Effluent Data Excavation Area I and WRTG Effluent

Parameter	11/3/09 Result, ug/l	Test America RL – ug/L	Weekly Average ug/l	NJDEP Permit Limit ug/l
Arsenic	<2.5	2.5	<2.5	3
Mercury	<0.20	0.20	<0.20	2
Thallium	<1.0	1.0	<1.0	2
Iron	<150	150	621	1,000
Manganese	52.6	10.0	417	1,000
TSS	<5,000	5,000	<5,000	5,000
Benzene	<1.0	0.2	<1.0	1

Weekly average values: When the reported value is greater than the MDL but less than the RL, a value of 50% of the RL will be used to calculate the average value. When the reported value is less than the MDL, a value of 50% of the MDL will be used to calculate the average value. NS = not sampled.

All Testing performed by Test America, Edison, NJ.

Please contact me with any questions.

Sincerely,

BIGLER ASSOCIATES, INC.

Daniel Bigler

C: J. Fettig, T. Schoenberg, D. Alesandro, L. Frey

SUMMARY OF ANALYTICAL RESULTS: 460-7536-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	Plant Effluent
Lab Sample No.	PQLs and	PQLs and	460-7536-1
Sampling Date	GW Quality	GW Quality	11/3/2009 3:45:00 PM
Matrix	2000 Criteria	2005Criteria	Water
Dilution Factor			
Units	ug/l	ug/l	ug/L
METALS	-		
Arsenic	8	3	2.5
Iron	300	300	150 U
Manganese	50	50	52.6
Mercury	2	. 2	0.20
Thallium	10	.2	1.0

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 11/5/2009 5:20:09 PM

<u>TestAmerica</u>

SUMMARY OF ANALYTICAL RESULTS: 460-7536-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	Plant Effluent	
Lab Sample No.	PQLs and	PQLs and	460-7536-1	Г
Sampling Date	GW Quality	GW Quality	11/3/2009 3:45:00 PM	
Matrix	2000 Criteria	2005Criteria	Water	Γ
Dilution Factor			1	Г
Units	ug/l	ug/i	ug/L	Г
VOLATILE COMPOUNDS (GC/MS)				
Benzene	1	1	1.0	Ü
Total Confident Conc.			0	
Total Estimated Conc. (TICs)			. 0	

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 11/5/2009 5:20:08 PM

<u>TestAmerico</u>

SUMMARY OF ANALYTICAL RESULTS: 460-7536-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	Plant Effluent	
Lab Sample No.	PQLs and	PQLs and	f in the state of	
Sampling Date	GW Quality	GW Quality	11/3/2009 3:45:00 PM	
Matrix	2000 Criteria	2005Criteria	Water	_
Dilution Factor				
Units				_
WET CHEMISTRY				
Total Suspended Solids (mg/L)	NA	NA	10.0	U

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 11/5/2009 5:20:09 PM

777 New Du Edison, New Phone: (732

TestAmerica

Massachusetts (M-NJ312), North Carolina (No. 578)

THE LEADER IN ENVIRONMENTAL TERTING Name (Ipr report and invoice) State (Location of site): NJ: X Regulatory Program: ANALYSIS RECUESTED FATER & BELOW TO MODATE RECUEST) 2 Week 1 Week Phone No. of Time Date Sample Identification Matrix. Cont 1 Preservation Used: 1 = ICE, 2 = HCI, 3 = HSO, 4 = HNO, 5 = NeOH Soil: 6 = Other 7 = Other Water: HG. 35 H/X= Special Instructions Water Metal: Date / Time Received by Company Relinquished by Dale / Time Received by Company Date / Time Relinquished by Company Received by Company Relinquished by Company Received by Date / Time Company

Laboratory Certifications: New Jersey (12028), New York (11452), Pennsylvania (68-522), Connecticut (PH-0200), Rhode Islan

CHAIN OF CUSTODY / ANALYSIS REQUEST

November 24, 2009

Chris Greene, P.E., Project Manager PARSONS 150 Federal Street 4th Floor Boston, MA 02110

Re: Ventron Velsicol Superfund Site – Construction Water Treatment Plant
CWTP Effluent Test Results from Testing of Water From Area I and WRTG Work
Effluent Sample Collected on November 19, 2009

Dear Chris:

Attached please find the laboratory data from Test America for the Construction Water Treatment Plant (CWTP) effluent sample collected on November 19, 2009. The CWTP was operated treating approximately 44,033 gallons of water from WRTG work and soil stockpile runoff during the week ending November 21st.

Sample Collection and Data Summary

Effluent results are presented below and copies of the data sheets and chain of custody forms are attached. Test results confirm compliance with the discharge permit-by-rule effluent limits.

Summary of CWTP Effluent Data

	Odminiary of CWTP Emident Data										
Parameter	11/19/09 Result, ug/l	Test America RL – ug/L	Weekly Average ug/l	NJDEP Permit Limit ug/I							
Arsenic	<2.5	0.5	<2.5	3							
Mercury	0.21	0.20	0.21	2							
Thallium	<1.0	0.20	<1.0	2							
Iron	300	0.10	300	1,000							
Manganese	50	5.0	50	1,000							
TSS	<5,000	5,000	<5,000	5,000							
Benzene	<1.0	0.2	<1.0	1							

Weekly average values: When the reported value is greater than the MDL but less than the RL, a value of 50% of the RL will be used to calculate the average value. When the reported value is less than the MDL, a value of 50% of the MDL will be used to calculate the average value. NS = not sampled.

All Testing performed by Test America

Please contact me with any questions.

Sincerely,

BIGLER ASSOCIATES, INC.

Daniel Bigler

C: J. Fettig, T. Schoenberg, D. Alesandro, L. Frey

SUMMARY OF ANALYTICAL RESULTS: 460-8123-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFFLUENT	
Lab Sample No.	PQLs and	PQLs and	460-8123-1	
Sampling Date	GW Quality	GW Quality	11/19/2009 2:10:00 PM	
Matrix	2000 Criteria	2005Criteria	Water	
Dilution Factor				
Units				
WET CHEMISTRY				
Total Suspended Solids (mg/L)	NA.	NA	5.0	U

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 11/24/2009 11:42:15 AM

SUMMARY OF ANALYTICAL RESULTS: 460-8123-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFFLUENT	
Lab Sample No.	PQLs and	PQLs and	460-8123-1	
Sampling Date	GW Quality	GW Quality	11/19/2009 2:10:00 PM	
Matrix	2000 Criteria	2005Criteria	Water	
Dilution Factor				
Units	ug/l	ug/l	ug/L	
METALS				
Arsenic	8	3	2.5	υ
Iron	300	300	150	υ
Manganese	50	50	42.3	
Mercury	2	2	0.21	
Thallium	10	2	1.0	U

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 11/24/2009 11:42:15 AM

SUMMARY OF ANALYTICAL RESULTS: 460-8123-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFFLUENT	
Lab Sample No.	PQLs and	PQLs and	460-8123-1	
Sampling Date	GW Quality	GW Quality	11/19/2009 2:10:00 PM	
Matrix	2000 Criteria	2005Criteria	Water	
Dilution Factor			1	
Units	ug/l	ug/l	ug/L	
VOLATILE COMPOUNDS (GC/MS)				
Benzene	1		1.0	υ
Total Confident Conc.			0	
Total Estimated Conc. (TICs)			0	

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 11/24/2009 11:42:13 AM

777 New Du Edison, Nev Phone: (732

TestAmerica

CHAIN OF CUSTODY / ANALYSIS REQUEST

THE CEMPER IN CITATION MENTAL TEST	IIVG														
Name (for report and invoice)	~		Sample	ns Name (Printed) I - 4 -	./\#	^	Site/	Projec	t Ident	ificatio	n ~~	A	<u> </u>
THE PROPERTY	<u>U</u>			<u> </u>	116-5	SAN	JANC.	<u>O</u>	<u> </u>					OW	_
Company B. Tonda ASSOC	- 5A-5	2 5	P. O. #								Progr	f site): am:	NJ:		N'
Address	771.7		Anaivais 1	Turneround 1	Time	T	AMALY	SIS REQU	ESTED (ENTER %	BELDIN TO	NEICATE	HEQUES)	_
Address MAIN ST			Standard	-			T	Τ	T	T				T	
City	State		Hush Chri	iges Authoriz	od For:	13	*								
REDUCTION PK STATE NT		2 Wook			1	9	'								
Phone Fax			1 Work		0	N	X	1/4	İ					l	
301 296 0)从	01	29	Other	<u> </u>	141	3evzent	To	19	l						
Sample Identification		Date	Time	Matrix	No. of. Cont.	Q	METALS*	12							
PLANT EFFLUENT		IIInia	2:10		5	×	X	×							
				1				1	1	1			7		_
	······			 	· ·		 	<u> </u>	1	 					
				<u> </u>	 	┼	+	-	┼	├	-			-	
·					<u> </u>	-		 	-	 					_
								<u> </u>	1						
			<u> </u>				1	<u> </u>							
							1								
	,														_
										<u> </u>					_
Preservation Used: 1 = ICE, 2 = HCI, 3	3 = H ₂ SO,	, 4 = HNO ₃	, 5 = Na(OH	Soil:										===
6 = Other					Water:	1.2	1.4	,		†					_
			TI	ى رى				Q =	<u>~</u> 5	- -			W	iter Met	— al:
Relinquished by	Compan	ÿ	,	, Da	te / Time	9	Recei	yed by		,				Compa	ny
Special Instructions METAL Relinquished by Clewice Leo				11/19/	A 15	50	で	les	40	ر م	11	144		TP	Š
Relinquished by	Compan	ıy		1 Oa	te / Time	3	Recei	ved by	1					Compa	ny
2)					1		2)								
Relinquished by	Compan	y		Da	ite / Time	2	Recei	ved by						Compa	ny
3)					1		3)								
Relinquished by	Compan	У		Da	te / Time)	Recei	ved by						Compa	ny
4)					1		4)							-	•
							1								

Laboratory Certifications: New Jersey (12028), New York (11452), Pennsylvania (68-522), Connecticut (PH-0200), Rhode Islan

Massachusetts (M-NJ312), North Carolina (No. 578)

December 10, 2009

Chris Greene, P.E., Project Manager PARSONS 150 Federal Street 4th Floor Boston, MA 02110

Re: Ventron Velsicol Superfund Site – Construction Water Treatment Plant CWTP Effluent Test Results from Testing of Water OU1 and WRTG Soil Stockpile and Decontamination Area Effluent Sample Collected on November 30, 2009

Dear Chris:

Attached please find the laboratory data from Test America for the Construction Water Treatment Plant (CWTP) effluent sample collected on November 30, 2009. The CWTP was operated treating approximately 22,600 gallons of water from WRTG work and soil stockpile runoff during the week ending December 5, 2009.

Sample Collection and Data Summary

Effluent results are presented below and copies of the data sheets and chain of custody forms are attached. Test results confirm compliance with the discharge permit-by-rule effluent limits.

Summary of CWTP Effluent Data

Parameter	11/30/09 Result, ug/l	Test America RL – ug/L	Weekly Average ug/l	NJDEP Permit Limit ug/l
Arsenic	<2.5	0.5	<2.5	3
Mercury	<0.20	0.20	<0.20	2
Thallium	<1.0	0.20	<1.0	2
Iron	<150	0.10	<150	1,000
Manganese	279	5.0	279	1,000
TSS	<5,000	5,000	<5,000	5,000
Benzene	<1.0	0.2	<1.0	1

Weekly average values: When the reported value is greater than the MDL but less than the RL, a value of 50% of the RL will be used to calculate the average value. When the reported value is less than the MDL, a value of 50% of the MDL will be used to calculate the average value. NS = not sampled.

All Testing performed by Test America

Please contact me with any questions.

Sincerely,

BIGLER ASSOCIATES, INC.

Daniel Bigler

C: J. Fettig, T. Schoenberg, D. Alesandro, L. Frey

SUMMARY OF ANALYTICAL RESULTS: 460-8404-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFFLUENT
Lab Sample No.	PQLs and	PQLs and	460-8404-1
Sampling Date	GW Quality	GW Quality	11/30/2009 1:00:00 PM
Matrix	2000 Criteria	2005Criteria	Water
Dilution Factor			. 1
Units	ug/l	ug/I	ug/L
VOLATILE COMPOUNDS (GC/MS)			
Benzene	1	1	1.0
Total Confident Conc.			0
Total Estimated Conc. (TICs)			0

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 12/8/2009 1:07:25 PM

SUMMARY OF ANALYTICAL RESULTS: 460-8404-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFFLUENT	
Lab Sample No.	PQLs and	PQLs and	460-8404-1	
Sampling Date	GW Quality	GW Quality	11/30/2009 1:00:00 PM	
Matrix	2000 Criteria	2005Criteria	Water	
Dilution Factor	1			
Units	'ug/l	ug/l	ug/L	
METALS		!		
Arsenic	8	3	2.5	U
iron	300	300	150	Ü
Manganese	50	50	279	
Mercury	2	2	0.20	U
Thallium	10	2	1.0	U

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 12/8/2009 1:07:25 PM

SUMMARY OF ANALYTICAL RESULTS: 460-8404-1

The Action Levels listed reflect current TestAmerica Edison knowledge of the standards and are intended as general guidance for the user. Please consult appropriate regulations and cleanup standards for your specific application.

Sample ID	NJ Higher of	NJ Higher of	PLANT EFFLUENT	
Lab Sample No.	PQLs and	PQLs and	460-8404-1	
Sampling Date	GW Quality	GW Quality	11/30/2009 1:00:00 PM	Г
Matrix	2000 Criteria	2005Criteria	Water	
Dilution Factor				
Units				Г
WET CHEMISTRY	t. Can a harrier			
Total Suspended Solids (mg/L)	NA	NA	5.0	U

NR: Not analyzed.

U: Indicates the analyte was analyzed for but not detected.

Generated on 12/8/2009 1:07:26 PM

777 New Du Edison, New Phone: (732)

<u>TestAmerica</u>

CHAIN OF CUSTODY / ANALYSIS REQUEST

HE LENDER IN ENTINONMENTAL LESTING										Site/Project Ide/fillication					
Name (for report and invoice)			Sample	s Name (Printed))		-	Site/	roject	Ideni	ilicatio	n,	.a. 3	
DAN ALBEANO/20))AN	<u> 426.</u>	SAM	nc	>				ודנ			
Company			P. O. #			"						f site):	NJ:	M	N
BILLER NOSCE-	7-,0	<u>ٽ</u>								latory					
Address			Analysis 1	Number out of T	lme.		AKALYT	UDSA BU	CESTED (ENTER & MELON TO ACCOMENSORS					,	
a MATH ST			Strindard				0								
City	State		Rush Chris	ages Authorize	ed For:	34	11					•		. 1	
RIDGETTELD PK	:US	-	2. Wook	L			4								
Phone Fax		~ \ \	1 Week	= .		1	1	X							ĺ
201 296 0712	<u> </u>	<u> </u>	Other	K -3	AHV	META	13	V						. 1	
Sample Identification		Date	Time	Matrix	No. of. Cont.	\$	8	1 12							
PLANT EFFLUENT		11/30/09	1100		5	X	×	7					,		
							T MARK								
							,						1		
															i
															. ,
Adj. 1. 7.11.															
	•										1				
Preservation Used: 1 = ICE, 2 = HCl,	3 = H ₂ SO	4. 4 = HNO	. 5 = Na(ОН	Soil:			1, , , , , , ,	-						
6 = Other					Water:	1,4	1,2	1							
Special Instructions * ALE OF	h < :-	H. 7	-1 A	. /=	ماد	40 0			<u> </u>		<i>d</i> -				
Relinquished by	Compa		11 /	Do	te / Time	-	Regel	dod hu			=	<u> </u>		Comp	
(1) Dente	BF	·	,	12/1/0			N	u	SL	2/	In	1.4	A.	Te	
Relinquished by	Compa	1.5			te / Time		Recei			-/				Comp	
2)					i		2)								
Relinquished by	Compar	'y		Da	te / Time)	Recei	ved by						Comp	eny
3)				B	1		3)								
Relinquished by	Compar	ıy		Da	te / Time		Recei	red by			-1			Comp	any
4)					l		4)	_							
Laboratory Certifications: New Jers	ey (120	28), New '	York (11	452), Pe	nnsylv	ania (6	8-522), Co	nnec	ticut (PH-0	200),	Rho	de is	an

Massachusetts (M-NJ312), North Carolina (No. 578)

Attachment 2 – Analytical Testing for Drum Disposal

WASTE STREAM TECHNOLOGY, INC.

302 Grote Street Buffalo, NY 14207 (716) 876-5290

Analytical Data Report

Report Date: 12/03/09 Work Order Number: 9K17008

Prepared For

Rick Elia Jr.

Sevenson Environmental Services

2749 Lockport Road

Niagara Falls, NY 14302

Fax: (716) 285-4201

Site: Ventron-Velsicol 1007

aclosed are the results of analyses for samples received by the laboratory on 11/17/09. If you have any estions concerning this report, please feel free to contact me.

Sincerely,

Brian S. Schepart, Ph.D., Laboratory Director

B_S Suly

ENVIRONMENTAL LABORATORY ACCREDITATION CERTIFICATION NUMBERS NYSDOH ELAP #11179 NJDEPE #73977 PADEP #68757 CTDPH #PH-0306 MADEP #M-NY068

Project: Ventron-Velsicol

2749 Lockport Road

Project Number: Ventron-Velsicol 1007

Niagara Falls NY, 14302

Project Manager: Rick Elia Jr.

Reported: 12/03/09 13:42

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
20091116DC-9C	9K17008-01	Solid	11/16/09 15:03	11/17/09 10:15
20091116DC-10C	9K17008-02	Sludge	11/16/09 15:30	11/17/09 10:15

2749 Lockport Road Niagara Falls NY, 14302 Project: Ventron-Velsicol

Project Number: Ventron-Velsicol 1007

Project Manager: Rick Elia Jr.

Reported: 12/03/09 13:42

TCLP Metals by 1311/6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
20091116DC-9C (9K17008-01) Solid	Sampled: 11/16/09 15:03	Received: 1	1/17/09 10):15					# # ###
Mercury	0.015	0.005	mg/L	5	AK92503	11/25/09	11/25/09	EPA 7470A	
Silver	ND	0.025	n	**	AK92003	11/20/09	11/20/09	6010B	U
Arsenic	ND	0.045	11	**	ń	n n	**	Ħ	U
Barium	0.169	0.025	**	#	**	ü	,,	Ħ	В
Cadmium	0.155	0.025	*1	#	н	"	**	#	
Chromium	ND	0.025	, 11	**	н		**	н	U
Lead	0.101	0.075	*1	ń	ń	Ü	11	**	
Selenium	ND	0.095	*1	**	Ħ	"	"	Ħ	U
20091116DC-10C (9K17008-02) Sludg	ge Sampled: 11/16/09 15:	30 Received	: 11/17/09	10:15					
Mercury	0.002	0.001	mg/L	1	AK92503	11/25/09	11/25/09	EPA 7470A	
Silver	ND	0.025	11	5	AK92003	11/20/09	11/20/09	6010B	υ
Arsenic	ND	0.045	n	н	**	**	n	n	ΰ
Barium	0.324	0.025	н	11	"	*		n	В
Cadmium	ND	0.025	n	Ħ	11	**	tr .	n	υ
Chromium	ND	0.025	H	**	"	11	•	n	υ
ıd	0.199	0.075	н	n	"	**	**	n	
enium	ND	0.095	Ĥ	tť.	н	**	tt-	11	υ

2749 Lockport Road Niagara Falls NY, 14302 Project: Ventron-Velsicol

Project Number: Ventron-Velsicol 1007

Project Manager: Rick Elia Jr.

Reported: 12/03/09 13:42

Polychlorinated Biphenyls by EPA Method 8082

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
20091116DC-9C (9K17008-01RE1) Solid	Sampled: 11/16/09 15:03	Receiv	ed: 11/17/09	9 10:15					
Aroclor 1016	ND	33.0	ug/kg dry	10	AK92015	11/20/09	11/25/09	8082	Ü
Aroclor 1221	ND	33.0	"	û	,#	Ħ	n	H	ι
Aroclor 1232	ND	33.0	"	Ħ	11	,n	u	ii	τ
Aroclor 1242	1660	33.0	**	**	**	11	ü	n	
Aroclor 1248	ND	33.0	"	"	n	n	"	•	υ
Aroclor 1254	246	33.0	*	*	n	**	**	n	
Aroclor 1260	82.7	33.0	"	*	*	**	**	•	
Surrogate: Tetrachloro-meta-xylene		112 %	82-1	23	"	"	"	#	
Surrogate: Decachlorobiphenyl		101 %	56-1	32	"	"	"	"	
20091116DC-10C (9K17008-02) Sludge	Sampled: 11/16/09 15:30	Receive	d: 11/17/09	10:15					
Aroclor 1016	ND	0.8	mg/kg	4	AK92411	11/24/09	11/24/09	8082	U
Aroclor 1221	ND	0.8	**	Ħ	н	"	ir	n	U
Aroclor 1232	ND	0.8	**	n		н	ii	n'	U
Aroclor 1242	ND	0.8	**	Ħ	"	"		•	υ
Aroclor 1248	ND	0,8		**	#	"	n	n,	u
oclor 1254	ND	0.8	**	n	**	"	77	m	U
oclor 1260	NĎ	0.8	**	н	#	"	•#	n	u
Surrogate: Tetrachloro-meta-xylene		124 %	60-1	38	"	н	"	<i>n</i>	
Surrogate: Decachlorobiphenyl		94.2 %	64-1	30	"	#	"	,,	

2749 Lockport Road Niagara Falls NY, 14302 Project: Ventron-Velsicol

Project Number: Ventron-Velsicol 1007

Project Manager: Rick Elia Jr.

Reported: 12/03/09 13:42

TCLP Volatile Organic Compounds by EPA Method 1311/8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
20091116DC-9C (9K17008-01) Solid	Sampled: 11/16/09 15:03	Received: 1	1/17/09 10:1	5					
vinyl chloride	ND	10	ug/l	1	AK92002	11/20/09	11/20/09	8260-TCLP	Ü
1,1-dichloroethene	ND	10	**	**		**	11	**	υ
2-butanone	ND	100	"		"	Ħ	H	#1	Ú
chloroform	12	10		**	**	Ħ	н	n	
carbon tetrachloride	ND	10		"	"	**	11	n	υ
benzene	97	10		**	"	**	н	**	
1,2-dichloroethane	ND	10	11	ü	n	**	н	"	υ
trichloroethene	1140	10	**	ŵ	**	H	41	#	
tetrachloroethene	1130	10	**	"	ή	H	11	**	
chlorobenzene	69	10	**	**	ei .	II	**	*	
1,4-dichlorobenzene	40	10	n	4	**	ÍI	Ħ	11	
Surrogate: Dibromofluoromethane		98.6 %	85-11	0	н	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		102 %	80-11	3	"	"	"	"	
Surrogate: Toluene-d8		98.5 %	86-11	1	#	"	"	"	
Surrogate: Bromofluorobenzene		96.3 %	85-11	6	"	"	"	"	
091116DC-10C (9K17008-02) Sludg	ge Sampled: 11/16/09 15::	30 Received	: 11/17/09 1	0:15					
yl chloride	ND	10	ug/l	1	AK92016	11/20/09	11/20/09	8260-TCLP	U
1,1-dichloroethene	ND	10	"	**	**	"	"	0200 1021	_
2-butanone					***		"	m	
	ND	100	÷	"	"	11	"	ri 11	U
chloroform	ND ND	100 10	ii II			*1		n n	U
chloroform carbon tetrachloride				11	H		n	n n n	U
•	ND	10	**	11	H	**	n n	# # # # # # # # # # # # # # # # # # #	บ บ บ
carbon tetrachloride	ND ND	10 10	"	11 11	n h	**	17 11		บ บ บ
carbon tetrachloride benzene	ND ND ND	10 10 10	# #	11 11 11	11 11 11	# #	n n u	" " " " "	บ บ บ บ
carbon tetrachloride benzene 1,2-dichloroethane	ND ND ND ND	10 10 10 10	# # # # # # # # # # # # # # # # # # #	11 11 11 11	11 11 11	# # # #	n n n		บ บ บ บ บ
carbon tetrachloride benzene 1,2-dichloroethane trichloroethene	ND ND ND ND ND	10 10 10 10	n n n	11 11 11	11 11 11 11 11	ff ff f7 f8	n n n n		ט ט ט ט ט
carbon tetrachloride benzene 1,2-dichloroethane trichloroethene tetrachloroethene	ND ND ND ND ND ND	10 10 10 10 10	n n n	11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11	n n n n		ט ט ט ט ט ט
carbon tetrachloride benzene 1,2-dichloroethane trichloroethene tetrachloroethene chlorobenzene	ND ND ND ND ND ND	10 10 10 10 10 10	n n n	n n n n	n n n n n	17 18 18 18 18	n n n n		ט ט ט ט ט
carbon tetrachloride benzene 1,2-dichloroethane trichloroethene tetrachloroethene chlorobenzene 1,4-dichlorobenzene Surrogate: Dibromofluoromethane	ND ND ND ND ND ND	10 10 10 10 10 10 10	" " " " " " " " " " " " " " " " " " "		0 0 0 0 0	n n n n	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11	ט ט ט ט ט ט
carbon tetrachloride benzene 1,2-dichloroethane trichloroethene tetrachloroethene chlorobenzene 1,4-dichlorobenzene	ND ND ND ND ND ND	10 10 10 10 10 10 10 10	" " " " " " 85-11	" " " " " " " " " " " " " " " " " " "	11 11 11 11 11 11 11 11 11 11 11 11 11	n n n n n n n n n n n n n n n n n n n	11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11	ט ט ט ט ט ט

Project: Ventron-Velsicol

2749 Lockport Road

Project Number: Ventron-Velsicol 1007

Niagara Falls NY, 14302

Project Manager: Rick Elia Jr.

Reported: 12/03/09 13:42

TCLP Pesticides by EPA Method 1311/8081A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
20091116DC-9C (9K17008-01) Solid	Sampled: 11/16/09 15:03	Received: 1	1/17/09 10	:15					
Gamma-BHC (Lindane)	ND	0.040	ug/l	1	AK92008	11/20/09	11/23/09	EPA 8081A	U
Heptachlor	ND	0.040	#	Ħ	Ħ	**	*	**	υ
Heptachlor Epoxide	ND	0.040	11	11	н		"	"	U
Endrin	ND	0.040	**	11	Ħ		••	"	U
Methoxychlor	ND	0.040	ù	n	н	*		п	U
Chlordane	ND	0.800	Û	Ħ		*		н	U
Toxaphene	ND	1.00	**	*	**	**		H	U
Surrogate: Tetrachloro-meta-xylene		87.6 %	69-	117	"	"	"	"	
Surrogate: Decachlorobiphenyl		74.0 %	62-	109	"	"	"	n'	
20091116DC-10C (9K17008-02) Sludg	ge Sampled: 11/16/09 15:	30 Received	: 11/17/09	10:15	·				
Gamma-BHC (Lindane)	ND	0.040	ug/l	1	AK92008	11/20/09	11/23/09	EPA 8081A	U
Heptachlor	ND	0.040		**	n	·n	•	н	U
Heptachlor Epoxide	ND	0.040	Ħ	"	**	n		**	U
Endrin	ND	0.040	*	"	*	**	**	Ħ	U
Methoxychlor	ND	0.040	**	"	n	**	**	n	U
lordane	ND	0.800	**	n	"	m .	**	п	U
xaphene	ND	1.00	n		*	**	**	**	υ
Surrogate: Tetrachloro-meta-xylene		100 %	69-	117	"	"	"	'n	
Surrogate: Decachlorobiphenyl		107 %	62-	109	"	"	ir	n	

2749 Lockport Road Niagara Falls NY, 14302 Project: Ventron-Velsicol

Project Number: Ventron-Velsicol 1007

Project Manager: Rick Elia Jr.

Reported: 12/03/09 13:42

TCLP Herbicides by EPA Method 1311/8151A

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
20091116DC-9C (9K17008-01) Solid Samp	led: 11/16/09 15:03	Received: 1	1/17/09 10	:15					
2,4-D	ND	20.0	ug/l	50	AK92009	11/20/09	11/23/09	8151	U
2,4,5-TP (Silvex)	ND	20.0	"	Ħ	**	"	n	"	υ
Surrogate: 2,4-DCPAA		55.5 %	32-	132	"	"	"	"	
20091116DC-10C (9K17008-02) Sludge Sa	mpled: 11/16/09 15:3	30 Received	: 11/17/09	10:15					
2,4-D	ND	20.0	ug/l	50	AK92009	11/20/09	11/23/09	8151	U
2,4,5-TP (Silvex)	ND	20.0	**	**	11	n	H	Ħ	U
Surrogate: 2,4-DCPAA		123 %	32-	132	"	"	"	,,	

2749 Lockport Road Niagara Falls NY, 14302 Project: Ventron-Velsicol

Project Number: Ventron-Velsicol 1007

Project Manager: Rick Elia Jr.

Reported: 12/03/09 13:42

TCLP Semivolatile Organic Compounds by EPA Method 1311/8270C Waste Stream Technology

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
20091116DC-9C (9K17008-01) Solid	Sampled: 11/16/09 15:03	Received: 1	1/17/09 10:1	5					
pyridine	NĎ	8	ug/l	1	AK92007	11/20/09	11/20/09	8270C-TCLP	1
1,4-dichlorobenzene	ND	8	n	11	H	**	**	н	1
Total cresols (o,m & p)	ND	24	**	**	**	u	#	Ħ	1
hexachloroethane	ND	8		н	11		*	п	1
nitrobenzene	ND	8	**	11	#1	**	**	n	1
hexachlorobutadiene	ND	8		#	**			**	,
2,4,6-trichlorophenol	ND	16	H	11	**	*	H	*	1
2,4,5-trichlorophenol	ND	8	11	**	tt	*	н	**	1
2,4-dinitrotoluene	ND	8	10	n	**	*	11	*	1
hexachlorobenzene	ND	8	**	11	**	**	н	**	1
pentachlorophenol	ND	16	11	n	**	#1	н	**	1
Surrogate: 2-Fluorophenol		27.5 %	16-72	2	"	,,	"	- n	
Surrogate: Phenol-d6		19.8 %	13-5		*	"	"	ir	
Surrogate: Nitrobenzene-d5		67.2 %	22-13		*	"	"	"	
Surrogate: 2-Fluorobiphenyl		70.3 %	47-10	6	"	"	,,	"	
Surrogate: 2,4,6-Tribromophenol		80.2 %	47-10	1	"	,,	"	,,	
rogate: Terphenyl-d14		77.3 %	36-13	2	"	"	"	"	
20091116DC-10C (9K17008-02) Slud	ge Sampled: 11/16/09 15:3	0 Received	: 11/17/09 1	0:15					
pyridine	ND	8	ug/l	1	AK92007	11/20/09	11/20/09	8270C-TCLP	
1,4-dichlorobenzene	ND	8	"	,	Ħ	**	*	#	Ţ
Total cresols (o,m & p)	ND	24	11	**	н	N	Ħ	tt	1
hexachloroethane	ND	8	**	11 ·	**	#	**	**	,
nitrobenzene	. ND	8	11	**	н	11	•	**	, I
hexachlorobutadiene	ND	8			"	"		n	1
2,4,6-trichlorophenol	ND	16	**	11	n	н		п	į
2,4,5-trichlorophenol	ND	8	**	#	n	"	10	"	ι
2,4-dinitrotoluene	ND	8	Ħ	77	**	11	11	,,	Ţ
hexachlorobenzene	ND	8	**	"	**	**	•	ń	Ţ
pentachlorophenol	ND	16	**	"				'n	1
Surrogate: 2-Fluorophenol		33.7 %	16-72	?		,,		"	
Surrogate: Phenol-d6		21.2 %	13-57		"	"	,,	"	
Surrogate: Nitrobenzene-d5		64.2 %	22-13		"	"	'n	,,	
Surrogate: 2-Fluorobiphenyl		69.8 %	47-10		"	"	"	'n	
Surrogate: 2,4,6-Tribromophenol		83.5 %	47-10		,,	,,		"	
Surrogate: Terphenyl-d14		73.0 %	36-13.	_					

Project: Ventron-Velsicol

2749 Lockport Road

Project Number: Ventron-Velsicol 1007

Niagara Falls NY, 14302

Project Manager: Rick Elia Jr.

Reported: 12/03/09 13:42

Conventional Chemistry Parameters by EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
20091116DC-9C (9K17008-01) Solid	Sampled: 11/16/09 15:03	Received: 1	1/17/09 10:	15					
рН	10.28	0.10	pH Units	1	AK91926	11/19/09	11/19/09	EPA 9045C	
% Solids	68.9	0.1	%	н	AK92010	11/19/09	11/20/09	% calculation	
20091116DC-10C (9K17008-02) Sludge	e Sampled: 11/16/09 15:3	0 Received	1: 11/17/09	10:15					
рН	8.89	0.10	pH Units	1	AK91926	11/19/09	11/19/09	EPA 9045C	
% Solids	79.6	0.1	%	**	AK92010	11/19/09	11/20/09	% calculation	

749 Lockport Road

Niagara Falls NY, 14302

Project: Ventron-Velsicol

Project Number: Ventron-Velsicol 1007

Project Manager: Rick Elia Jr.

Reported: 12/03/09 13:42

Physical Parameters by APHA/ASTM/EPA Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
20091116DC-9C (9K17008-01) Solid	Sampled: 11/16/09 15:03 R	eceived: 1	1/17/09 10):15				_	
Ignitability by Flashpoint	>200		deg F	1	AK92312	11/23/09	11/23/09	EPA 1010	
Reactive Cyanide	ND	40.0	mg/kg	н	AK92011	11/19/09	11/20/09	Section 7.3.3.2	υ
Reactive Sulfide	ND	40.0	**	**	AK92012	**	11/20/09	Section 7.3.4.2	U
20091116DC-10C (9K17008-02) Sludg	ge Sampled: 11/16/09 15:30	Received	: 11/17/09	10:15					
Ignitability by Flashpoint	>200		deg F	1	AK92314	11/23/09	11/23/09	EPA 1010	
Reactive Cyanide	ND	40.0	mg/kg	**	AK92011	11/19/09	11/20/09	Section 7.3.3.2	U
Reactive Sulfide	ND	40.0	**	n	AK92012	•	11/20/09	Section 7.3.4.2	U

evenson Environmental Services Project: Ventron-Velsicol
2749 Lockport Road Project Number: Ventron-Velsicol 1007 Reported:
Niagara Falls NY, 14302 Project Manager: Rick Elia Jr. 12/03/09 13:42

Notes and Definitions

U Analyte included in the analysis, but not detected at or above the reporting limit.

B Analyte is found in the associated blank as well as in the sample (CLP B-flag).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD

Relative Percent Difference

Sport Place East Lind-Ridge US 07075 Larsox 2012x@MSD. Com January 1910 609 - 2521	30	O CIL					· .[_	DUE C		TURN	AROU 2	ND TIA	AE:		ARE SPECIAL DETECTION LIMITS PEGLIFIED: If you presse atlant requirements 1s a QC Prichage Argured: TES If you presse atlant requirements.			
AND 2017 933 - 1996 LITO Sevention Extraorector THE Lakent 32 Hours Ch. LOOT MORE TO DESCRIPTION LEVEL DESCRIPTION ENTER SONATURE SAMPLE ID.	DATE SALL	THEORY	SAMPLING	To Mark	See Albert J.		7	ANA	LYSES	то в	E PERI	FORME				OF CONTAI	,.	OFFICE USE ONLY WST. I.O.
1 200911116D(-9(2 200911116 DZ-10 C 3 4 5 6	1(heb Walu	-	_	3 2											Coaste	s Hg /4		01 02
ELMOUISHED BY:	× C	CATE	Sami	09 1	Ma Me: 160		y	9	ECEIVE 2	Tue C	<u> </u>					DATE:	7. 109	TIME: